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cies o)K which might culminate in additional solutions 
within the band in some cases and (b) new solutions 
outside the band. 

The choice of the center-of-mass coordinates xtf for 
the "lattice" is not the only possibility; we could have 
chosen, as well, any three coordinates of the molecule to 
which a single effective mass can be attached. In the 

case of interstitial masses, for instance, one may keep 
the old lattice coordinates, taking the interstitials as 
the molecular system (£/). 

The author wishes to express his thanks to Professor 
James A. Krumhansl for valuable discussions and to 
Professor Miles V. Klein for showing him his results 
before publication. 
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The effect of rapid nuclear motions on the observable second moments of nuclear-magnetic resonance-
absorption lines is considered by the method of lattice harmonics. An explicit formula is given in terms of 
time-averaged values of lattice harmonics. In the case of lattice vibrations in a cubic solid with a cubic 
point group at the nuclear site, the observable correction to the rigid lattice second moment is zero up to and 
including the second order in the relative nuclear amplitudes of vibration. In general, only the anisotropic 
vibrations contribute in second order to the observable second moment. 

THE effects of nuclear motion on nuclear-magnetic 
resonance lines of nuclei in crystals are well 

recognized and generally referred to as "motional 
narrowing" since the nuclear motion produces a reduc
tion in the observed resonance line width and moments. 
Denoting the truncated dipolar interaction Hamiltonian 
of Van Vleck1 by 5C and the total nuclear spin by I, the 
second moment is proportional to the trace of ([5C,7 J 2 ) , 
where the angular bracket indicates the time average of 
the enclosed quantity. In the presence of nuclear motion 
which causes a time dependence of 3C and which is rapid 
compared to the Larmor precession of the nuclei in the 
external magnetic field, ([3C,7 J 2 ) may be rewritten as 
follows: 

<[3C,/ J2>= [<3C>,7 J 2 + <[3C- <0e>, IXJ). (1) 
Equation (1) results since X=(3C)+(3C-(3C» a n d 
([(5C), /J[X-(JC), /J)=0. As pointed out by several 
authors,2 the second term in (1) gives a contribution to 
the second moment in the far wings of the absorption 
line which is not observed in a conventional magnetic 
resonance experiment. In the following, we will refer to 
the second moment computed by taking the trace of 
<[3C,7 J 2 ) and [<3C),7 J 2 as M2' and M2

obs, respectively. 
The experimentally measured second moment will 
correspond to ikf2

obs. M2
obs has also been referred to as 

the "observable" part of the second moment.2 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
8 See, for example, the review by A. Abragam, in The Principles 

of Nuclear Magnetism (Oxford University Press, New York, 1961), 
Chap. 10. 

An alternative, but equivalent way of viewing the 
situation is to note that if a nuclear spin undergoes a 
periodic motion during which it experiences a range of 
local magnetic fields due to neighboring nuclei, and, 
further, if the period of this motion is very short com
pared to the period of Larmor precession, then the mag
netic moment will respond only to the mean local field. 
Thus, in computing the mean square local field, the 
local field must first be time averaged corresponding to 
the first term of Eq. (1). The fourth moment is propor
tional to ([3C,[3C,/J]2) which may be seen from argu
ments similar to those given above yields an observable 
part which is proportional to [(3C),[(3C),7 J ] 2 when the 
motion is fast. 

For a rigid lattice, the dependence of the second 
moment on the orientation of the crystal under study 
may be conveniently expressed in terms of the lattice 
harmonics of the point group of the crystal3 as follows 
(for only one magnetic nucleus per unit cell): 

M2=l2iry4m(I+l) 

XEE 
k La 

ZC(22L;00)jXL
l«*(jk) 

2L+1 r J 
T3k 

l a ( ^ ) , (2) 

where L takes on the values 0, 2, and 4, C(22L; 00) is a 
Clebsch-Gordan coefficient, XL

la denotes a lattice 
harmonic of order L belonging to the identity repre
sentation of the crystal point group, jk and (0,<p) denote 
the respective orientations of the radius vector ry* and 
the external magnetic field relative to the crystal co
ordinate system. 

3 D. E. O'Reilly and T. Tsang, Phys. Rev. 128, 2639 (1962). 
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To discuss the effects of nuclear motion on M2 , we 
note that1 [3C, /J is proportional to 

where jk refers to the orientation of the radius vector 
tjk relative to the laboratory coordinate system whose 
z axis coincides with the direction of the external field. 
Hence, 

M 2
o b s = [ / ( / + l ) / 3 ^ ] i ; f c ( b j k ) 2 rad2 see"2. (3) 

Transforming from laboratory to crystal coordinate 
system and then from spherical to lattice harmonics,3 

bjk may be written as 

bjk= - {\2ir/5hWrjk-* £„«< X2^{jk)X2^{B^). (4) 

The time average of (5) is 

< ^ ) = - ( 1 2 7 r / 5 ) 7 2 ^ 2 

X E M « < <Xf**(jk)rik-*)X2>*t(e,4>). (5) 

Hence, 

M2
oh*= ( 4 8 T T 2 / 2 5 ) 7 4 ^ / ( / + 1 ) 

XT,k,li,a,i^,a',Arjk-
zX2

fiai*(jk)) 

As we have shown previously,3 the group property of 
the rotation operators for crystals may be used to prove 
that only those terms with ju=/x' and i=i' do not vanish 
in (6). Furthermore, it has been also shown previously3 

that ]C* X2
fXai*(jk)X2,ia'iUk)is independent of i. Using 

the lattice harmonics coupling coefficients as defined in 
Ref. 3, Eq. (6) may be written as 

Jf aob.= ( 4 8 , 2 / 2 5 ) ^ 2 / ( 7 + 1 ) £ £ 
L=0,2,4 A,k,n,ct,a' 

XUl(r^X^Uk))(rik-'X^{jk))-] 
i 

Xd^(2(Ma),2faO\LA)XL"(6,4>), (7) 

where dM is the dimensionality of the /-tth representation. 
For a rigid lattice, the angular brackets in (7) may be 

omitted. We can easily show that 

25 
lC(22L;Q0)jXL^(jk) 

( 2 Z + 1 ) 4 T T 

-Z^d^(2(ixa),2(mf)\LA) 

XniiX2^*(jk)X2»«i(jk)l. 

From this, (2) follows directly from (7). 
Now we will consider the effect of lattice vibrations. 

The time-average value of quantities in (7) may be 
computed by expansion in a Taylor's series about the 
equilibrium positions. Denoting X2*"xi(jk)rjk~* by <£, 
then one obtains up to and including second-order 
terms: 

<*> = * o + E ( — ) < A * < > + J £ ( - ) (AxiAxj). (8) 
i \d%i/ ij\dXidXj/o 

The subscript 0 refers to the equilibrium positions. By 
definition, (Ax*)=0. 

Let us first consider the case of cubic point group 
symmetry at a nuclear site. Then we have (AxiAxj) 
— dijA2, where A2 is the relative mean-square amplitude 
of vibration of the nuclei. I t is also true that V2<£ = 0 
since V2(r-3F2m (#,</>) ) = 0 for any m and X2

lxai is a linear 
combination of second-order spherical harmonics. 
Hence, up to and including second order in the relative 
nuclear displacements, the observable correction to the 
rigid lattice second moment due to lattice vibrations is 
zero. (In Ref. 3,4 we have calculated the quantity M2 

for F19 in CaF2 and for Al27 in Al. This calculated vibra
tion correction, however, is unobservable.2) The dis
agreement between the calculated second moments 
based on rigid lattice and the experimental value is 
hardly significant for CaF2. For aluminum metal, the 
difference is as large as 20%, and is probably associated 
with quadrupolar interactions of the nuclei with electric 
field gradients produced by defects in the metal. 

For symmetries other than cubic, the above argu
ments are still valid in the case of isotropic vibrations. 
That is, the observed second moments are not affected 
by isotropic nuclear vibrations. However, anisotropic 
vibrations may contribute to the observed second 
moments. 

4 See Sees. VIA, VIB, and Appendix B of Ref. 3. 


